
D.2 Standard ODE Methods 529

on appropriate choices of time-discretization methods and time-step limits
for temporal stability.

For the reader’s convenience, Table D.1 provides the numerical values of
the intersections of the absolute stability regions with the negative real axis
and the positive imaginary axis for all methods discussed in this section.

D.2.1 Leap Frog Method

The leap frog (LF) method (also called midpoint method) is a second-order,
two-step scheme given by

un+1 = un−1 + 2∆tfn . (D.2.1)

This produces solutions of constant norm for the model problem provided
that λ∆t is on the imaginary axis and that |λ∆t| ≤ 1 (see Table D.1). Thus,
leap frog is a suitable explicit scheme for problems with purely imaginary
eigenvalues. It also is a reversible, or symmetric, method. However, since it
is only well-behaved on a segment in the complex λ∆t-plane for the model
problem, extra care is needed in practical situations.

The most obvious application is to periodic advection problems, for the
eigenvalues of the Fourier approximation to d/dx are imaginary. The diffi-
culty with the leap frog method is that the solution is subject to a temporal
oscillation with period 2∆t. This arises from the extraneous (spurious) solu-
tion to the temporal difference equations. The oscillations can be controlled
by every so often averaging the solution at two consecutive time-levels.

Leap frog is quite inappropriate for problems whose spatial eigenvalues
have nonzero real parts. This certainly includes the approximation of dif-
fusion operators. Leap frog is also not viable for advection operators with
nonperiodic boundary conditions, since the discrete spectra of Chebyshev
and Legendre approximations to the standard advection operator have ap-
preciable real parts.

D.2.2 Adams–Bashforth Methods

This is a class of explicit multistep methods which includes the simple forward
Euler (FE) method

un+1 = un +∆tfn , (D.2.2)

the popular second-order Adams–Bashforth (AB2) method

un+1 = un + 1
2∆t

[
3fn − fn−1

]
, (D.2.3)

the still more accurate third-order Adams–Bashforth (AB3) method

un+1 = un + 1
12∆t

[
23fn − 16fn−1 + 5fn−2

]
, (D.2.4)
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and the fourth-order Adams–Bashforth (AB4) method

un+1 = un + 1
24∆t

[
55fn − 59fn−1 + 37fn−2 − 9fn−3

]
. (D.2.5)

These methods are not reversible.
The stability regions A of these methods are shown in Fig. D.1 (left) and

the stability boundaries along the axes are given in Table D.1. Note that the
size of the stability region decreases as the order of the method increases. Note
also that except for the origin, no portion of the imaginary axis is included
in the stability regions of the first and second-order methods, whereas the
third- and fourth-order versions do have some portion of the imaginary axis
included in their stability regions. Nevertheless, the AB2 method is weakly
unstable, i.e., for a periodic, hyperbolic problem the acceptable ∆t decreases
at T increases.

As is evident from Fig. D.1 (left), higher order AB methods are tempo-
rally stable for Fourier approximations to periodic advection problems. Let
the upper limit of the absolute stability region along the imaginary axis be
denoted by c. Then the temporal stability limit is

N

2
∆t ≤ c , or ∆t ≤ c

π
∆x . (D.2.6)

The limit on ∆t is smaller by a factor of π than the corresponding limit for
a second-order finite-difference approximation in space. The Fourier spec-
tral approximation is more accurate in space because it represents the
high-frequency components much more accurately than the finite-difference
method. The artificial damping of the high-frequency components which is
produced by finite-difference methods enables the stability restriction on the
time-step to be relaxed.

Chebyshev and Legendre approximations to advection problems appear
to be temporally stable under all Adams–Bashforth methods for sufficiently
small ∆t; precisely, for ∆t ≤ CN−2 for a suitable constant C. (For simplicity,
this and the subsequent stability limits refer to a single-domain discretization.
For multidomain methods, the limits on ∆t should also scale with the size of
the subdomains, in a way that depends on the specific spatial discretization
method that is being used). Since the spatial eigenvalues all have negative
real parts, the failure of the AB2 method to include the imaginary axis in its
absolute stability region does not preclude temporal stability.

The temporal stability limits for Adams–Bashforth methods for Fourier,
Chebyshev and Legendre approximations to diffusion equations are easy to
deduce since their spatial eigenvalues (i.e., the eigenvalues of the matrix −L)
are real, negative and limited in modulus as indicated, e.g., in CHQZ2, Chap.
4. Combining this information with the stability bounds along the negative
real axis as provided in Table D.1, one gets that ∆t should be limited by
a constant times N−2 for Fourier approximations, by a constant times N−4

for Chebyshev or Legendre collocation approximations, and by a constant
times N−3 for Legendre G-NI approximations.
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D.2.3 Adams–Moulton Methods

A related set of implicit multistep methods are the Adams–Moulton methods.
They include the backward Euler (BE) method

un+1 = un +∆tfn+1 , (D.2.7)

the Crank–Nicolson (CN) method

un+1 = un + 1
2∆t[f

n+1 + fn] , (D.2.8)

the third-order Adams–Moulton (AM3) method

un+1 = un + 1
12∆t[5f

n+1 + 8fn − fn−1] , (D.2.9)

and the fourth-order Adams–Moulton (AM4) method

un+1 = un + 1
24∆t[9f

n+1 + 19fn − 5fn−1 + fn−2] . (D.2.10)

Forward Euler (FE) (see D.2.2), backward Euler (BE) and Crank–Nicolson
(CN) methods are special cases of θ-methods, defined as

un+1 = un +∆t[θfn+1 + (1 − θ)fn] , (D.2.11)

for 0 ≤ θ ≤ 1. Precisely, they correspond to the choice θ = 0 (FE), θ = 1 (BE)
and θ = 1/2 (CN). All θ-methods except for FE are implicit. All θ-methods
are first-order accurate, except for CN, which is second-order. For each θ < 1

2 ,
the absolute stability region is the circle in the left half-plane Re(λ∆t) ≤ 0
with center z = (2θ− 1)−1 and radius r = (1− 2θ)−1. The stability region of
the CN method coincides with the half-plane Re(λ∆t) ≤ 0. For each θ > 1

2 ,
the absolute stability region is the exterior of the open circle in the right
half-plane Re(α) > 0 with center z = (2θ − 1)−1 and radius r = (2θ − 1)−1.
Thus, all θ-methods for 1

2 ≤ θ ≤ 1 are A-stable.
The absolute stability regions of the third- and fourth-order Adams–

Moulton methods are displayed in Fig. D.1 (right) and the stability bound-
aries along the axes are given in Table D.1. In comparison with the explicit
Adams–Bashforth method of the same order, an Adams–Moulton method
has a smaller truncation error (by factors of five and nine for second and
third-order versions), a larger stability region, and requires one fewer levels
of storage. However, it does require the solution of an implicit set of equa-
tions. The CN method is reversible; the others are not.

The CN method is commonly used for diffusion problems. In Navier–
Stokes calculations, it is frequently applied to the viscous and pressure gra-
dient components. Although CN is absolutely stable for the former and tem-
porally stable for the latter, it has the disadvantage that it damps high-
frequency components very weakly, whereas in reality these components de-
cay very rapidly.
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Fig. D.1. Absolute stability regions of Adams–Bashforth (left) and Adams–
Moulton (right) methods

Fig. D.2. Absolute stability regions of backwards-difference formulas (left) and
Runge–Kutta methods (right). The BDF methods are absolutely stable on the ex-
teriors (and boundaries) of the regions enclosed by the curves, whereas the RK
methods are absolutely stable on the interiors (and boundaries) of the regions en-
closed by the curves

The Adams–Moulton methods of third and higher order are only con-
ditionally stable for advection and diffusion problems. The stability limits
implied by Fig. D.1 indicate that the stability limit of a high-order Adams–
Moulton method is roughly ten times as large for a diffusion problem as the
stability limit of the corresponding Adams–Bashforth method. In addition,
AM3 and AM4 are weakly unstable for Fourier approximations to advection
problems, since the origin is the only part of the imaginary axis which is
included in their absolute stability regions.
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Table D.1. Intersections of absolute stability regions with the negative real axis
(left) and with the positive imaginary axis (right)

Method A ∩ R− A∩ iR+

Leap frog (midpoint) {0} [0, 1]

Forward Euler [−2, 0] {0}
Crank–Nicolson (−∞, 0] [0, +∞)

Backward Euler (−∞, 0] [0, +∞)

θ-method, θ < 1/2 [2/(2θ − 1), 0] {0}
θ-method, θ ≥ 1/2 (−∞, 0] [0, +∞)

AB2 (−1, 0] {0}
AB3 [−6/11, 0] [0, 0.723]

AB4 [−3/10, 0] [0, 0.43]

AM3 [−6, 0] {0}
AM4 [−3, 0] {0}
BDF2 (−∞, 0] [0, +∞)

BDF3 (−∞, 0] [0, 1.94)

BDF4 (−∞, 0] [0, 4.71)

RK2 [−2, 0] {0}
RK3 [−2.51, 0] [0, 1.73]

RK4 [−2.79, 0] [0, 2.83]

D.2.4 Backwards-Difference Formulas

Another class of implicit time discretizations is based upon backwards-
difference formulas. These include the first-order backwards-difference scheme
(BDF1), which is identical to backward Euler, the second-order backwards-
difference scheme (BDF2)

un+1 = 1
3 [4un − un−1] + 2

3∆tf
n+1 , (D.2.12)

the third-order backwards-difference scheme (BDF3)

un+1 = 1
11 [18un − 9un−1 + 2un−2] + 6

11∆tf
n+1 , (D.2.13)

and the fourth-order backwards-difference scheme (BDF4)

un+1 = 1
25 [48un − 36un−1 + 16un−2 − 3un−3] + 12

25∆tf
n+1 . (D.2.14)

The absolute stability regions of these methods are displayed in Fig. D.2
(left), and the stability boundaries along the axes are given in Table D.1.
The stability regions are much larger than those of the corresponding AM
methods.


